Cubic pencils of lines and bivariate interpolation
نویسندگان
چکیده
Abstract: Cubic pencils of lines are classified up to projectivities. Explicit formulae for the addition of lines on the set of nonsingular lines of the pencils are given. These formulae can be used for constructing planar generalized principal lattices, which are sets of points giving rise to simple Lagrange formulae in bivariate interpolation. Special attention is paid to the irreducible nonsingular case, where elliptic functions are used in order to express the addition in a natural form. Mathematics Subject Classification: 41A05, 65D05, 41A63
منابع مشابه
Interpolation on lattices generated by cubic pencils
Principal lattices are distributions of points in the plane obtained from a triangle by drawing equidistant parallel lines to the sides and taking the intersection points as nodes. Interpolation on principal lattices leads to particularly simple formulae. These sets were generalized by Lee and Phillips considering three-pencil lattices, generated by three linear pencils. Inspired by the additio...
متن کامل“ garcia de galdeano ” garcía de galdeano seminario matemático n . 27
Principal lattices in the plane are distributions of points particularly simple to use Lagrange, Newton or Aitken-Neville interpolation formulas. Principal lattices were generalized by Lee and Phillips, introducing three-pencil lattices, that is, points which are the intersection of three lines, each one belonging to a different pencil. In this contribution, a semicubical parabola is used to co...
متن کاملBivariate mean value interpolation on circles of the same radius
We consider bivariate mean-value interpolationproblem, where the integrals over circles are interpolation data. In this case the problem is described over circles of the same radius and with centers are on astraight line and it is shown that in this case the interpolation is not correct.
متن کاملRange restricted interpolation using Gregory’s rational cubic splines
The construction of range restricted univariate and bivariate interpolants to gridded data is considered. We apply Gregory’s rational cubic C splines as well as related rational quintic C splines. Assume that the lower and upper obstacles are compatible with the data set. Then the tension parameters occurring in the mentioned spline classes can be always determined in such a way that range rest...
متن کامل0 “ garcia de galdeano ” garcía de galdeano seminario matemático n . 25 PRE - PUBLICACIONES del seminario matematico 2001 J . M . Carnicer M . García - Esnaola
A bivariate polynomial interpolation problem for points lying on an algebraic curve is introduced. The geometric characterization introduced by Chung and Yao, which provides simple Lagrange formulae, is here analyzed for interpolation points lying on a line, a conic or a cubic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008